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Thrust: Impact of AI Advancements

Challenge

The modern large-scale nuclear physics (NP) experiments in high-energy particle colliders utilize streaming-
readout electronics to digitize detector response at O(100) Tbps bandwidth. Prominent examples at
Brookhaven National Lab (BNL) include the sPHENIX experiment at Relativistic Heavy Ion Collider
(RHIC) [4], which is under construction, and the experiments proposed for the Electron-Ion Collider (EIC) [5],
planned for the 2030s . One of the main challenges for these streaming readout systems is to manage the data
rate with sufficient data reduction in real time so the end-data fit persistent storage for offline analysis,
which is typically at O(1000) times smaller and O(100) Gbps. Such data reduction traditionally is achieved
via real-time high level triggers, which select and save a small subset of collisions of interest. Although
triggering is applicable to high energy collider experiments such as those at the Large Hardron Collider at
CERN, it is insufficient for these nuclear physics experiments which study diverse collision topologies. And
traditional triggering approach is inefficient to preserve the max information harvested from the operation of
colliders that costs O(100)M per year to DOE. Meanwhile, in recent years, ML-based high-throughput data
reduction has emerged as a promising approach to efficiently preserve max information for a given space of
persistent storage, e.g. via AI data compression, feature extraction, and noise filtering [1, 3, 2].

Collider experiments have widely used lossless real-time compression with a moderate compression ratio
(∼ 2). Lossy compression has better performance but requires longer development/validation cycles and may
necessitate highly specialized hardware (e.g., ASICs) and a dedicated computing facility (e.g.ALICE O2).
High Energy Physics(HEP) / Nuclear Physics (NP) collider experiments, including sPHENIX, generate three-
dimensional (3D) sparse data, presenting a unique challenge for lossy compression algorithms. For example,
the data entries are encoded using 10-bit integers, whereas the current generic scientific lossy compression
algorithms, such as SZ, ZFP, and MGARD are mostly designed for dense data and high-precision floating
point entries, resulting sub-optimal compression rates and reconstruction fidelity. Such large volumes of
sparse integer entries present a unique challenge for developing lossy compression algorithms.

Opportunity

Modern deep neural network (DNN) techniques and AI-centric hardware innovations present perfect opportu-
nities to revolutionize real-time data processing pipelines in large HEP/NP experiments. In particular, DNN-
based data compression, co-design and utilization of cutting-edge hardware. Compressing high-dimension
data into low dimension embedding space has been a focal research topic in coding theory. Both lossy and
lossless variations of compression algorithms have broad applications for audio, image and scientific data.
However, existing methods have failed to meet the large-volume real-time processing throughput constraints:
either too slow or too lossy. DNN approach provides a unique angle to tackle data compression problems.

First, an algorithm or trained DNN model is tailored to the characteristics of the data set, unlike general
compression algorithms either by compressing unused bits or heuristics such as linearity of data. The
manifold hypothesis states that for naturally occurred high-dimension data there exists a transform to map
the data onto a low-dimension manifold. DNN models, trained through back-propagation, are the easiest
way to achieve an approximation of such mapping by far. However, the quality of DNN models, besides the
design of model architecture, heavily relies on the quality of training data and quality verification metrics.
Comparing to traditional process of modeling (manually finding patterns in data and crafting heuristics to
patch existing models), developing DNN models for scientific applications hinged on creating more realistic
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and diverse training data, articulating non-trivial verification metrics to safeguard the model, and seeking
ways to integrate known knowledge such as conservation laws into the DNN models.

Second, DNN models, consisting layers of linear transformations such as linear layers and convolutional
layers followed by non-linear activations such as rectified linear units and hyperbolic tangent units, are ex-
tremely easy to compute in parallel on massively parallel processors such as graphic processing units (GPUs).
Due to AI’s success and its market potential, growing number of chip vendors and start up companies have
optimized their products towards DNN training and inference. Innovative companies such as GraphCore,
SambaNova, Cerebras and Xilinx have developed products based on the dataflow architecture. Deviating
from the traditional von Neumann architecture where data are stored at a central memory and pulled (and
pushed) through cache hierarchy, in a dataflow architecture, to reduce energy consumption and data fetching
latency, memory and process units are divided into inter-connected tiles. This rapidly development of newer
architecture potentially provides higher throughput and lower latency for real-time DNN model inference.

Timeliness and Research Directions

The sPHENIX experiment is coming online in 2023 [4]. And the EIC received DOE Mission Need status (CD-
0) status in 2020 and is progressing rapidly through conceptual experimental design [5]. Therefore, it is an
opportune moment to carry out this research, which has immediate benefits in the sPHENIX experiment and
may radically impact the design of the future experiments in EIC, the next major NP facility funded by DOE.
Preliminary results suggest that neural compression is superior both in compression ratio and reconstruction
fidelity than traditional methods for sparse integer-valued TPC data [1]. For the next 2 to 3 years, there
are three immediate research directions. First of all, neural compression algorithms can be extended to
handle the entire accelerator detector input as a whole rather than at the sectional (O(106) entries) level or
1/24 of the detector. Intuitively, we expect such model would improve the compression ratio further as inter-
sectional relations can also be learned and compressed. Secondly, unlike most of the conventional compression
methods where sizes of compressed data depend on the input data such as the number of zeros or entropy,
compression ratio of neural compression is tuned and then fixed during the network architecture design
process. Having an autonomous way to optimize the network architecture or varying the size of compressed
data dynamically would be good to have. Thirdly, characterizing the throughput and latency performance
of neural compression algorithm on different accelerators would inform the feasibility and deployment of
such algorithms. As for the long-term, with the growing landscape of novel hardware, ever-improving DNN
models and expending applications on experiment settings, a continuous integration system that can quickly
1) optimize and test existing models on novel hardware, 2) accommodate new datasets and verification
methods, and 3) health check the real-time model performance and estimate model boundaries.

The impacts of a successful deployment of the AI real-time data reduction at sPHENIX and EIC are
immediate and significant: an AI-driven reduction system would enable accessing almost 100% of all colli-
sions. For the future EIC, it is the consensus of the community to have a full streaming DAQ to achieve the
ultimate physics goals, in parallel with a conventional trigger system. An AI-driven systems are promising
to deliver the required reduction performance optimizing the physics performance and hardware cost. We
would also expect the technique and experience in these experiments to impact other fields at DOE complex
where a high throughput data stream is desired, such as synchrotron light sources and electron microscopy
imaging.
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